I am trying to implement an algorithm for allocating code generation / registration for trees in favor of my old one, where I put everything on the stack. Now I'm trying to implement the Sethi-Ullman algorithm , but from all the content that I found on Wikipedia and some web pages, some parts of the algorithm remain incomprehensible to me.
I am looking for an explanation for the parts that I am missing with some working pseudo-code / C / C ++ code.
1) What approach should I use to select a free register? those. stack of register used. I use what I consider very poor: return registers one by one: if register R0 was previously used, return R1. If R1, return R0 and so on. This does not work for small expressions.
2) What if label(left) >= K and label(right) >= K?
Here are the functions labelandsethi-ullman
REG reg()
{
static REG r = REG_NONE;
switch(r) {
case REG_NONE:
r = REG_r0;
break;
case REG_r0:
r = REG_r1;
break;
case REG_r1:
r = REG_r0;
break;
default:
assert(0);
break;
}
return r;
}
void SethiUllman(AST *node)
{
static const int K = 2;
if(node->left != NULL && node->right != NULL) {
int l = node->left->n;
int r = node->right->n;
if(l >= K && r >= K) {
SethiUllman(node->right);
node->n = node->n - 1;
SethiUllman(node->left);
}
else if(l >= r) {
SethiUllman(node->left);
SethiUllman(node->right);
node->n = node->n - 1;
}
else if(l < r) {
SethiUllman(node->right);
SethiUllman(node->left);
node->n = node->n - 1;
}
node->reg = reg();
printf("%s %s,%s\n",
op_string(node->type),
reg_string(node->left->reg),
reg_string(node->right->reg));
}
else if(node->type == TYPE::id) {
node->n = node->n + 1;
node->reg = reg();
emit(node);
}
else {
node->reg = reg();
emit(node);
}
}
void label(AST *node)
{
if(node == NULL)
return;
label(node->left);
label(node->right);
if(node->left != NULL && node->right != NULL) {
int l = node->left->n;
int r = node->right->n;
if(l == r)
node->n = 1 + l;
else
node->n = max(1, l, r);
}
else if(node->type == TYPE::id) {
node->n = 1;
} else if(node->type == TYPE::number) {
node->n = 0;
}
}
For a tree from exp as follows:
2+b*3
It generates:
LOAD R0,[b]
LOAD R1,3
MUL R0,R1
LOAD R1,2
ADD R1,R0
And from one such thing:
8+(2+b*3)
It generates:
LOAD R0,[b]
LOAD R1,3
MUL R0,R1
LOAD R1,2
ADD R1,R0
LOAD R1,8 < R1 is not preserved. I don't know how it should be done.
ADD R0,R1
Above, I provided only the basic algorithms, but if necessary, I can provide the full code for the test case on your computer.