Let's first understand how the first two cycles work.
for i = 1 to length(A)
for j = 1 to length(A) - i + 1
1 n ( A), i. SO, = 1 n . 2, (n-1) .., 1.
, :
n + (n - 1) + (n - 2) + (n - 3) + .... + 1 times...
: sum ( 1 n) = N * (N + 1) / 2, (N^2 + N)/2 , Big oh
O (n ^ 2) (Big Oh of n square)
...
:
for k = j to j + i - 1
for k = 0 to i - 1 ( , / j, , , , )
, 0 1 ( i) n , 0 2 ( i) (n - 1) .
, :
n + 2(n-1) + 3(n-2) + 4(n-3).....
= n + 2n - 2 + 3n - 6 + 4n - 12 + ....
= n(1 + 2 + 3 + 4....) - (addition of some numbers but this can not be greater than n^2)
= `N(N(N+1)/2)`
= O(N^3)
, N ^ 3 (Big Oh of n cube)
, !