Work with Union-Find algorithms with many objects

I have a problem with (no more with stackoverflow (hehe)). Find the algorithm when trying to implement the UnionFind structure algorithm using path compression.

I have a standard ints array, the array can become quite large -> it works fine for up to 60,000,000 elements.

My Union function is as follows:

public void unite(int p, int q) {
    if(p >= 0 && p < id.length && q >= 0 && q < id.length){
        if (isInSameSet(p, q)) return;
        id[find(p)] = find(q); 
        stevilo--;
    }
}

My isInSameSet looks like this:

    public boolean isInSameSet(int p, int q) {
        if(p >= 0 && p < id.length && q >= 0 && q < id.length) 
            return find(p) == find(q);
        return false;
}

I tried the iterative path in Find:

    public int find(int i) {
        while (i != id[i]){
            id[i] = id[id[i]];
            i = id[i];              
        }       
    return i;
    }

and tail-recrusion:

    public int find(int i) {    
        int p = id[i];
        if (i == p) {
          return i;
        }
        return id[i] = find(p);     
     }

Is there anything I missed in my code? Is there any other approach to such problems?

@edit: adding a constructor to the code:

    public UnionFind(int N) {
        stevilo = N;
        id = new int[N];        
        for(int i = 0; i < N; i++){
            id[i] = i;
        }

@ edit2 (better explanation and new results): The problem is not stackoverflow anymore for less than 60,000,000 elements, which is more than enough to solve my problems.

I invoke test unions as follows:

for(i=0;i<id.length-1;i++)
unite(i,i+1)

so the final pairs will be like this:

0:1, 1:2, 2:3, 3:4,.. 

:)

, 0 (99 100 ), .

, , (0: 0, 1:1, 2: 2, 3: 3). (0: 2, 1: 6, 2: 1, 3: 5,...), .

, , -

id[i] = id[id[i]].
+4
3

UnionFind, - O (log * (n)). n. , . , . :

public class UnionFind
{
  private int[] id;

  public UnionFind(int capacity)
  {
    id = new int[capacity];
    for (int i = 0; i < capacity; i++)
    {
      id[i] = i;
    }
  }

  public boolean isConnected(int p, int q)
  {
    return root(p) == root(q);
  }

  public void connect(int p, int q)
  {
    if (isConnected(p, q))
    {
      return;
    }

    id[root(p)] = root(q);
  }

  private int root(int p)
  {
    int temp = p;

    if (p != id[p] && id[id[p]] != id[p])
    {
      while (p != id[p])
      {
        p = id[p];
      }

      id[temp] = id[p];
    }

    return id[p];
  }
}
0

- isInSameSet...

public void unite(int p, int q) {
    if(p >= 0 && p < id.length && q >= 0 && q < id.length){
        int rootp = find(p);
        int rootq = find(q);
        if (rootp==rootq) return;
        id[rootp] = rootq; 
        stevilo--;
    }
}
+2

Union-Find . . .

, , , Union-By-Rank Union-By-Size. , . , , , .

+1
source

Source: https://habr.com/ru/post/1534013/


All Articles