:
. , sRGB, - . , -, - , . , .
, , Lab. , , , , . , , .
A 0,43 .
, , . , , .
Algorithm MarkMix
Input:
color1: Color, (rgb) The first color to mix
color2: Color, (rgb) The second color to mix
mix: Number, (0..1) The mix ratio. 0 ==> pure Color1, 1 ==> pure Color2
Output:
color: Color, (rgb) The mixed color
//Convert each color component from 0..255 to 0..1
r1, g1, b1 ← Normalize(color1)
r2, g2, b2 ← Normalize(color1)
//Apply inverse sRGB companding to convert each channel into linear light
r1, g1, b1 ← sRGBInverseCompanding(r1, g1, b1)
r2, g2, b2 ← sRGBInverseCompanding(r2, g2, b2)
//Linearly interpolate r, g, b values using mix (0..1)
r ← LinearInterpolation(r1, r2, mix)
g ← LinearInterpolation(g1, g2, mix)
b ← LinearInterpolation(b1, b2, mix)
//Compute a measure of brightness of the two colors using empirically determined gamma
gamma ← 0.43
brightness1 ← Pow(r1+g1+b1, gamma)
brightness2 ← Pow(r2+g2+b2, gamma)
//Interpolate a new brightness value, and convert back to linear light
brightness ← LinearInterpolation(brightness1, brightness2, mix)
intensity ← Pow(brightness, 1/gamma)
//Apply adjustment factor to each rgb value based
if ((r+g+b) != 0) then
factor ← (intensity / (r+g+b))
r ← r * factor
g ← g * factor
b ← b * factor
end if
//Apply sRGB companding to convert from linear to perceptual light
r, g, b ← sRGBCompanding(r, g, b)
//Convert color components from 0..1 to 0..255
Result ← MakeColor(r, g, b)
End Algorithm MarkMix
Python:
def all_channels(func):
def wrapper(channel, *args, **kwargs):
try:
return func(channel, *args, **kwargs)
except TypeError:
return tuple(func(c, *args, **kwargs) for c in channel)
return wrapper
@all_channels
def to_sRGB_f(x):
''' Returns a sRGB value in the range [0,1]
for linear input in [0,1].
'''
return 12.92*x if x <= 0.0031308 else (1.055 * (x ** (1/2.4))) - 0.055
@all_channels
def to_sRGB(x):
''' Returns a sRGB value in the range [0,255]
for linear input in [0,1]
'''
return int(255.9999 * to_sRGB_f(x))
@all_channels
def from_sRGB(x):
''' Returns a linear value in the range [0,1]
for sRGB input in [0,255].
'''
x /= 255.0
if x <= 0.04045:
y = x / 12.92
else:
y = ((x + 0.055) / 1.055) ** 2.4
return y
def all_channels2(func):
def wrapper(channel1, channel2, *args, **kwargs):
try:
return func(channel1, channel2, *args, **kwargs)
except TypeError:
return tuple(func(c1, c2, *args, **kwargs) for c1,c2 in zip(channel1, channel2))
return wrapper
@all_channels2
def lerp(color1, color2, frac):
return color1 * (1 - frac) + color2 * frac
def perceptual_steps(color1, color2, steps):
gamma = .43
color1_lin = from_sRGB(color1)
bright1 = sum(color1_lin)**gamma
color2_lin = from_sRGB(color2)
bright2 = sum(color2_lin)**gamma
for step in range(steps):
intensity = lerp(bright1, bright2, step, steps) ** (1/gamma)
color = lerp(color1_lin, color2_lin, step, steps)
if sum(color) != 0:
color = [c * intensity / sum(color) for c in color]
color = to_sRGB(color)
yield color






. , , , , . , , , , . 71 , .
, . , , t, 0,0 1,0.
class Line:
''' Defines a line of the form ax + by + c = 0 '''
def __init__(self, a, b, c=None):
if c is None:
x1,y1 = a
x2,y2 = b
a = y2 - y1
b = x1 - x2
c = x2*y1 - y2*x1
self.a = a
self.b = b
self.c = c
self.distance_multiplier = 1.0 / sqrt(a*a + b*b)
def distance(self, x, y):
''' Using the equation from
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Line_defined_by_an_equation
modified so that the distance can be positive or negative depending
on which side of the line it on.
'''
return (self.a * x + self.b * y + self.c) * self.distance_multiplier
class PerceptualGradient:
GAMMA = .43
def __init__(self, color1, color2):
self.color1_lin = from_sRGB(color1)
self.bright1 = sum(self.color1_lin)**self.GAMMA
self.color2_lin = from_sRGB(color2)
self.bright2 = sum(self.color2_lin)**self.GAMMA
def color(self, t):
''' Return the gradient color for a parameter in the range [0.0, 1.0].
'''
intensity = lerp(self.bright1, self.bright2, t) ** (1/self.GAMMA)
col = lerp(self.color1_lin, self.color2_lin, t)
total = sum(col)
if total != 0:
col = [c * intensity / total for c in col]
col = to_sRGB(col)
return col
def fill_gradient(im, gradient_color, line_distance=None, max_distance=None):
w, h = im.size
if line_distance is None:
def line_distance(x, y):
return x - ((w-1) / 2.0)
ul = line_distance(0, 0)
ur = line_distance(w-1, 0)
ll = line_distance(0, h-1)
lr = line_distance(w-1, h-1)
if max_distance is None:
low = min([ul, ur, ll, lr])
high = max([ul, ur, ll, lr])
max_distance = min(abs(low), abs(high))
pix = im.load()
for y in range(h):
for x in range(w):
dist = line_distance(x, y)
ratio = 0.5 + 0.5 * dist / max_distance
ratio = max(0.0, min(1.0, ratio))
if ul > ur: ratio = 1.0 - ratio
pix[x, y] = gradient_color(ratio)
>>> w, h = 406, 101
>>> im = Image.new('RGB', [w, h])
>>> line = Line([w/2 - h/2, 0], [w/2 + h/2, h-1])
>>> grad = PerceptualGradient([252, 13, 27], [41, 253, 46])
>>> fill_gradient(im, grad.color, line.distance, 71)
:
