I am trying to resize an image using the bilinear technique that I found here , but I see nothing but a black image. So, in the first place I have my image decoded using LodePNG and the pixels go into a variable vector<unsigned char>. It says that they are stored as RGBARGBA, but when I tried to apply the image to the X11 window, I realized that they were saved as BGRABGRA. I do not know if the X11 API is a reorder or LodePNG decoder. Anyway, first of all, I convert BGR to RGB:
vector<unsigned char> Image;
unsigned char red, blue;
unsigned int i;
for(i=0; i<Image.size(); i+=4)
{
red = Image[i + 2];
blue = Image[i];
Image[i] = red;
Image[i + 2] = blue;
}
, , . ( ).
RGBA int, :
vector<int> IntImage;
for(unsigned i=0; i<Image.size(); i+=4)
{
IData.push_back(256*256*this->Data[i+2] + 256*this->Data[i+1] + this->Data[i]);
}
, :
vector<int> resizeBilinear(vector<int> pixels, int w, int h, int w2, int h2) {
vector<int> temp(w2 * h2);
int a, b, c, d, x, y, index ;
float x_ratio = ((float)(w-1))/w2 ;
float y_ratio = ((float)(h-1))/h2 ;
float x_diff, y_diff, blue, red, green ;
for (int i=0;i<h2;i++) {
for (int j=0;j<w2;j++) {
x = (int)(x_ratio * j) ;
y = (int)(y_ratio * i) ;
x_diff = (x_ratio * j) - x ;
y_diff = (y_ratio * i) - y ;
index = (y*w+x) ;
a = pixels[index] ;
b = pixels[index+1] ;
c = pixels[index+w] ;
d = pixels[index+w+1] ;
blue = (a&0xff)*(1-x_diff)*(1-y_diff) + (b&0xff)*(x_diff)*(1-y_diff) +
(c&0xff)*(y_diff)*(1-x_diff) + (d&0xff)*(x_diff*y_diff);
green = ((a>>8)&0xff)*(1-x_diff)*(1-y_diff) + ((b>>8)&0xff)*(x_diff)*(1-y_diff) +
((c>>8)&0xff)*(y_diff)*(1-x_diff) + ((d>>8)&0xff)*(x_diff*y_diff);
red = ((a>>16)&0xff)*(1-x_diff)*(1-y_diff) + ((b>>16)&0xff)*(x_diff)*(1-y_diff) +
((c>>16)&0xff)*(y_diff)*(1-x_diff) + ((d>>16)&0xff)*(x_diff*y_diff);
temp.push_back(
((((int)red)<<16)&0xff0000) |
((((int)green)<<8)&0xff00) |
((int)blue) |
0xff);
}
}
return temp;
}
:
vector<int> NewImage = resizeBilinear(IntData, image_width, image_height, window_width, window_height);
RGBA . RGBA ( int)
Image.clear();
for(unsigned i=0; i<NewImage.size(); i++)
{
Image.push_back(NewImage[i] & 255);
Image.push_back((NewImage[i] >> 8) & 255);
Image.push_back((NewImage[i] >> 16) & 255);
Image.push_back(0xff);
}
( ), , . , RGBA, IntImage , , RGBA/int < > int/RGBA. . , /, , .