I am trying to perform portfolio optimization that returns weights that maximize my utility function. I can do this part just fine, including a limit that weighs in the sum, and that the balance also gives me the target risk. I also included ratings for [0 <= weight <= 1]. This code is as follows:
def rebalance(PortValue, port_rets, risk_tgt): #convert continuously compounded returns to simple returns Rt = np.exp(port_rets) - 1 covar = Rt.cov() def fitness(W): port_Rt = np.dot(Rt, W) port_rt = np.log(1 + port_Rt) q95 = Series(port_rt).quantile(.05) cVaR = (port_rt[port_rt < q95] * sqrt(20)).mean() * PortValue mean_cVaR = (PortValue * (port_rt.mean() * 20)) / cVaR return -1 * mean_cVaR def solve_weights(W): import scipy.optimize as opt b_ = [(0.0, 1.0) for i in Rt.columns] c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1}, {'type':'eq', 'fun': lambda W: sqrt(np.dot(W, np.dot(covar, W))\ * 252) - risk_tgt}) optimized = opt.minimize(fitness, W, method='SLSQP', constraints=c_, bounds=b_) if not optimized.success: raise BaseException(optimized.message) return optimized.x # Return optimized weights init_weights = Rt.ix[1].copy() init_weights.ix[:] = np.ones(len(Rt.columns)) / len(Rt.columns) return solve_weights(init_weights)
Now I can delve into the problem, I have the weight stored in the MultIndex pandas series, so that each asset is an ETF corresponding to the asset class. When a portfolio with the same weight is printed, it looks like this:
From [263]:
equity CZA 0.045455
IWM 0.045455
SPY 0.045455
intl_equity EWA 0.045455
EWO 0.045455
IEV 0.045455
bond IEF 0.045455
SHY 0.045455
TLT 0.045455
intl_bond BWX 0.045455
BWZ 0.045455
IGOV 0.045455
commodity DBA 0.045455
DBB 0.045455
DBE 0.045455
pe ARCC 0.045455
BX 0.045455
PSP 0.045455
hf DXJ 0.045455
SRV 0.045455
cash BIL 0.045455
GSY 0.045455
Name: 2009-05-15 00:00:00, dtype: float64 how to include an additional restriction requirement, so when I group this data together, the sum of the weight falls between the distribution ranges that I predefined for this asset class?
So, I want to add an extra border so that
init_weights.groupby(level=0, axis=0).sum()
From [264]:
equity 0.136364
intl_equity 0.136364
bond 0.136364
intl_bond 0.136364
commodity 0.136364
pe 0.136364
hf 0.090909
cash 0.090909
dtype: float64
is within these boundaries
[(.08,.51), (.05,.21), (.05,.41), (.05,.41), (.2,.66), (0,.16), (0,.76), (0,.11)]
[UPDATE] I thought I would show my progress with the awkward psuedo-solution, which I am not very happy with. Namely, because he does not solve the weight using the entire data set, but rather an asset class by asset class. Another problem is that instead it returns a series, not a weight, but I'm sure someone more suitable than me could offer some insight into the groupby function.
So, with a soft change to my source code, I have:
PortValue = 100000 model = DataFrame(np.array([.08,.12,.05,.05,.65,0,0,.05]), index= port_idx, columns = ['strategic']) model['tactical'] = [(.08,.51), (.05,.21),(.05,.41),(.05,.41), (.2,.66), (0,.16), (0,.76), (0,.11)] def fitness(W, Rt): port_Rt = np.dot(Rt, W) port_rt = np.log(1 + port_Rt) q95 = Series(port_rt).quantile(.05) cVaR = (port_rt[port_rt < q95] * sqrt(20)).mean() * PortValue mean_cVaR = (PortValue * (port_rt.mean() * 20)) / cVaR return -1 * mean_cVaR def solve_weights(Rt, b_= None): import scipy.optimize as opt if b_ is None: b_ = [(0.0, 1.0) for i in Rt.columns] W = np.ones(len(Rt.columns))/len(Rt.columns) c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1}) optimized = opt.minimize(fitness, W, args=[Rt], method='SLSQP', constraints=c_, bounds=b_) if not optimized.success: raise ValueError(optimized.message) return optimized.x
The next single-line layer will return a slightly optimized series.
port = np.dot(port_rets.groupby(level=0, axis=1).agg(lambda x: np.dot(x,solve_weights(x))),\ solve_weights(port_rets.groupby(level=0, axis=1).agg(lambda x: np.dot(x,solve_weights(x))), \ list(model['tactical'].values))) Series(port, name='portfolio').cumsum().plot()

[Update 2]
The following changes return limited weights, although they are still not optimal as they are broken down and optimized for classes of composite assets, therefore, when the restriction for the target risk is considered only a minimized version of the original covariance matrix, / p>
def solve_weights(Rt, b_ = None): W = np.ones(len(Rt.columns)) / len(Rt.columns) if b_ is None: b_ = [(0.01, 1.0) for i in Rt.columns] c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1}) else: covar = Rt.cov() c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1}, {'type':'eq', 'fun': lambda W: sqrt(np.dot(W, np.dot(covar, W)) * 252) - risk_tgt}) optimized = opt.minimize(fitness, W, args = [Rt], method='SLSQP', constraints=c_, bounds=b_) if not optimized.success: raise ValueError(optimized.message) return optimized.x