I am working on strengthening my F # -fu and decided to tackle the Hacker Cup Double Squares issue. I was having problems with the runtime, and I was wondering if anyone could help me figure out why it is much slower than my C # equivalent.
Good description from another post;
Source: Facebook Hacker Cup Qualification Round 2011
A two-square number is an integer X which can be expressed as the sum of two perfect squares. For example, 10 is a double square, because 10 = 3 ^ 2 + 1 ^ 2. Given X, how can we determine the number of ways it can be written as the sum of two squares? For example, 10 can only be written as 3 ^ 2 + 1 ^ 2 (we do not consider 1 ^ 2 + 3 ^ 2 different). On the other hand, 25 can be written as 5 ^ 2 + 0 ^ 2 or as 4 ^ 2 + 3 ^ 2.
You need to solve this problem for 0 β€ X β€ 2,147,483,647.
Examples:
10 => 1
25 => 2
3 => 0
0 => 1
1 => 1
Numbers from competition
1740798996
1257431873
2147483643
602519112
858320077
1048039120
415485223
874566596
1022907856
65
421330820
1041493518
5
1328649093
1941554117
4225
2082925
0
1
3
My main strategy (which I am open to criticism) is;
- Create a dictionary (for memoize) of input numbers initialized to 0
- Get the highest number (LN) and pass it to the count / memo function
- Get the square root of LN as int
- Calculate squares for all numbers from 0 to LN and save in dict
- Sum squares for non-repeating combinations of numbers from 0 to LN
- If the amount is indicated in memo dict, add 1 to the memo
- Finally, print the samples of the original numbers.
Here is the F # code (see code changes below). I wrote that it seems to me to be consistent with this strategy (runtime: ~ 8: 10);
open System open System.Collections.Generic open System.IO /// Get a sequence of values let rec range min max = seq { for num in [min .. max] do yield num } /// Get a sequence starting from 0 and going to max let rec zeroRange max = range 0 max /// Find the maximum number in a list with a starting accumulator (acc) let rec maxNum acc = function | [] -> acc | p::tail when p > acc -> maxNum p tail | p::tail -> maxNum acc tail /// A helper for finding max that sets the accumulator to 0 let rec findMax nums = maxNum 0 nums /// Build a collection of combinations; ie [1,2,3] = (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) let rec combos range = seq { let count = ref 0 for inner in range do for outer in Seq.skip !count range do yield (inner, outer) count := !count + 1 } let rec squares nums = let dict = new Dictionary<int, int>() for s in nums do dict.[s] <- (s * s) dict /// Counts the number of possible double squares for a given number and keeps track of other counts that are provided in the memo dict. let rec countDoubleSquares (num: int) (memo: Dictionary<int, int>) = // The highest relevent square is the square root because it squared plus 0 squared is the top most possibility let maxSquare = System.Math.Sqrt((float)num) // Our relevant squares are 0 to the highest possible square; note the cast to int which shouldn't hurt. let relSquares = range 0 ((int)maxSquare) // calculate the squares up front; let calcSquares = squares relSquares // Build up our square combinations; ie [1,2,3] = (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) for (sq1, sq2) in combos relSquares do let v = calcSquares.[sq1] + calcSquares.[sq2] // Memoize our relevant results if memo.ContainsKey(v) then memo.[v] <- memo.[v] + 1 // return our count for the num passed in memo.[num] // Read our numbers from file. //let lines = File.ReadAllLines("test2.txt") //let nums = [ for line in Seq.skip 1 lines -> Int32.Parse(line) ] // Optionally, read them from straight array let nums = [1740798996; 1257431873; 2147483643; 602519112; 858320077; 1048039120; 415485223; 874566596; 1022907856; 65; 421330820; 1041493518; 5; 1328649093; 1941554117; 4225; 2082925; 0; 1; 3] // Initialize our memoize dictionary let memo = new Dictionary<int, int>() for num in nums do memo.[num] <- 0 // Get the largest number in our set, all other numbers will be memoized along the way let maxN = findMax nums // Do the memoize let maxCount = countDoubleSquares maxN memo // Output our results. for num in nums do printfn "%i" memo.[num] // Have a little pause for when we debug let line = Console.Read()
And here is my version in C # (Runtime: ~ 1: 40:
using System; using System.Collections.Generic; using System.Diagnostics; using System.IO; using System.Linq; using System.Text; namespace FBHack_DoubleSquares { public class TestInput { public int NumCases { get; set; } public List<int> Nums { get; set; } public TestInput() { Nums = new List<int>(); } public int MaxNum() { return Nums.Max(); } } class Program { static void Main(string[] args) { // Read input from file. //TestInput input = ReadTestInput("live.txt"); // As example, load straight. TestInput input = new TestInput { NumCases = 20, Nums = new List<int> { 1740798996, 1257431873, 2147483643, 602519112, 858320077, 1048039120, 415485223, 874566596, 1022907856, 65, 421330820, 1041493518, 5, 1328649093, 1941554117, 4225, 2082925, 0, 1, 3, } }; var maxNum = input.MaxNum(); Dictionary<int, int> memo = new Dictionary<int, int>(); foreach (var num in input.Nums) { if (!memo.ContainsKey(num)) memo.Add(num, 0); } DoMemoize(maxNum, memo); StringBuilder sb = new StringBuilder(); foreach (var num in input.Nums) { //Console.WriteLine(memo[num]); sb.AppendLine(memo[num].ToString()); } Console.Write(sb.ToString()); var blah = Console.Read(); //File.WriteAllText("out.txt", sb.ToString()); } private static int DoMemoize(int num, Dictionary<int, int> memo) { var highSquare = (int)Math.Floor(Math.Sqrt(num)); var squares = CreateSquareLookup(highSquare); var relSquares = squares.Keys.ToList(); Debug.WriteLine("Starting - " + num.ToString()); Debug.WriteLine("RelSquares.Count = {0}", relSquares.Count); int sum = 0; var index = 0; foreach (var square in relSquares) { foreach (var inner in relSquares.Skip(index)) { sum = squares[square] + squares[inner]; if (memo.ContainsKey(sum)) memo[sum]++; } index++; } if (memo.ContainsKey(num)) return memo[num]; return 0; } private static TestInput ReadTestInput(string fileName) { var lines = File.ReadAllLines(fileName); var input = new TestInput(); input.NumCases = int.Parse(lines[0]); foreach (var lin in lines.Skip(1)) { input.Nums.Add(int.Parse(lin)); } return input; } public static Dictionary<int, int> CreateSquareLookup(int maxNum) { var dict = new Dictionary<int, int>(); int square; foreach (var num in Enumerable.Range(0, maxNum)) { square = num * num; dict[num] = square; } return dict; } } }
Thanks for watching.
UPDATE
Changing the combo function will lead to a significant increase in performance (from 8 minutes to 3:45):
/// Old and Busted... let rec combosOld range = seq { let rangeCache = Seq.cache range let count = ref 0 for inner in rangeCache do for outer in Seq.skip !count rangeCache do yield (inner, outer) count := !count + 1 } /// The New Hotness... let rec combos maxNum = seq { for i in 0..maxNum do for j in i..maxNum do yield i,j }