I have an expression like this

which is introduced in sympy like this (for the sake of a reproducible example in this question)
from sympy import * expression = Add(Mul(Integer(-1), Float('0.9926375361451395', prec=2), Add(Mul(Float('0.33167082639756074', prec=2), Pow(Symbol('k1'), Float('-0.66666666666666674', prec=2)), Pow(Symbol('n1'), Float('0.66666666666666674', prec=2))), Mul(Float('0.97999999999999998', prec=2), exp(Mul(Integer(-1), Symbol('mu1'))))), Pow(Add(Mul(Float('0.97999999999999998', prec=2), Symbol('k1'), exp(Mul(Integer(-1), Symbol('mu1')))), Mul(Integer(-1), Symbol('k2')), Mul(Pow(Symbol('n1'), Float('0.66666666666666674', prec=2)), Pow(Mul(Symbol('k1'), exp(Mul(Integer(-1), Symbol('mu1')))), Float('0.33333333333333331', prec=2)))), Integer(-1))), Pow(Add(Mul(Float('0.97999999999999998', prec=2), Symbol('k0'), exp(Mul(Integer(-1), Symbol('mu0')))), Mul(Integer(-1), Symbol('k1')), Mul(Pow(Symbol('n0'), Float('0.66666666666666674', prec=2)), Pow(Mul(Symbol('k0'), exp(Mul(Integer(-1), Symbol('mu0')))), Float('0.33333333333333331', prec=2)))), Integer(-1)))
Observing this expression, a first-order Taylor approximation for any of the variables, for example. k1 , around some non-zero value should be nonzero, but this code
x = symbol("x") expression.series(k1, x0 = x, n = 1)
returns 0 . This is a problem because I am trying (ultimately) to compute the multidimensional approximation of the Taylor series, in the same spirit as this answer , and if one of the extensions of the series is erroneously evaluated to zero, it all breaks down.
Did I code something incorrectly, or is it a simple basic calculus because it is bad and it actually evaluates to zero? From the documentation for the series I am sure that I am using it correctly.