There is a very similar flow in the stack overflow: Piecewise regression with a quadratic polynomial and a straight line smoothly connecting at the break point . The only difference is that we are now considering:

It turns out that the functions est , choose.c and pred defined in my answer do not need to be changed at all; we only need to modify getX to return the design matrix for your piecewise regression:
getX <- function (x, c) cbind("beta0" = 1, "beta1" = pmin(x - c, 0))
Now we follow the example of a toy example to fit the model to your data:
x <- c(1, 2, 3, 1, 2, 1, 6, 1, 2, 3, 2, 1, 4, 3, 1) y <- c(0.041754212, 0.083491254, 0.193129615, 0.104249201, 0.17280516, 0.154342335, 0.303370501, 0.025503008, 0.123934121, 0.191486527, 0.183958737, 0.156707866, 0.31019215, 0.281890206, 0.25414608)
x varies from 1 to 6, so consider
c.grid <- seq(1.1, 5.9, 0.05) fit <- choose.c(x, y, c.grid) fit$c

Finally, we make a prediction:
x.new <- seq(1, 6, by = 0.1) p <- pred(fit, x.new) plot(x, y, ylim = c(0, 0.4)) matlines(x.new, p[,-2], col = c(1,2,2), lty = c(1,2,2), lwd = 2)

We have rich information in the established model:
str(fit) #List of 12 # $ coefficients : num [1:2] 0.304 0.055 # $ residuals : num [1:15] -0.06981 -0.08307 -0.02844 -0.00731 0.00624 ... # $ fitted.values: num [1:15] 0.112 0.167 0.222 0.112 0.167 ... # $ R : num [1:2, 1:2] -3.873 0.258 9.295 -4.37 # $ sig2 : num 0.00401 # $ coef.table : num [1:2, 1:4] 0.3041 0.055 0.0384 0.0145 7.917 ... # ..- attr(*, "dimnames")=List of 2 # .. ..$ : chr [1:2] "beta0" "beta1" # .. ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)" # $ aic : num -34.2 # $ bic : num -39.5 # $ c : num 4.5 # $ RSS : num 0.0521 # $ r.squared : num 0.526 # $ adj.r.squared: num 0.49
For example, we can check the table of coefficient summaries:
fit$coef.table