I use the scikit-learn MDS method to perform dimensional reduction on some data. I would like to check the voltage value in order to gain access to quality reduction. I was expecting something between 0 - 1. However, I got values ββoutside of this range. Here is a minimal example:
%matplotlib inline from sklearn.preprocessing import normalize from sklearn import manifold from matplotlib import pyplot as plt from matplotlib.lines import Line2D import numpy def similarity_measure(vec1, vec2): vec1_x = numpy.arctan2(vec1[1], vec1[0]) vec2_x = numpy.arctan2(vec2[1], vec2[0]) vec1_y = numpy.sqrt(numpy.sum(vec1[0] * vec1[0] + vec1[1] * vec1[1])) vec2_y = numpy.sqrt(numpy.sum(vec2[0] * vec2[0] + vec2[1] * vec2[1])) dot = numpy.sum(vec1_x * vec2_x + vec1_y * vec2_y) mag1 = numpy.sqrt(numpy.sum(vec1_x * vec1_x + vec1_y * vec1_y)) mag2 = numpy.sqrt(numpy.sum(vec2_x * vec2_x + vec2_y * vec2_y)) return dot / (mag1 * mag2) plt.figure(figsize=(15, 15)) delta = numpy.zeros((100, 100)) data_x = numpy.random.randint(0, 100, (100, 100)) data_y = numpy.random.randint(0, 100, (100, 100)) for j in range(100): for k in range(100): if j <= k: dist = similarity_measure((data_x[j].flatten(), data_y[j].flatten()), (data_x[k].flatten(), data_y[k].flatten())) delta[j, k] = delta[k, j] = dist delta = 1-((delta+1)/2) delta /= numpy.max(delta) mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=0, dissimilarity="precomputed", n_jobs=1) coords = mds.fit(delta).embedding_ print mds.stress_ plt.scatter(coords[:, 0], coords[:, 1], marker='x', s=50, edgecolor='None') plt.tight_layout()
In my test, the following is printed:
+263,412196461
And produced this image:

How can I analyze this value without knowing the maximum value? Or how to normalize it so that it is between 0 and 1?
Thanks.
source share