ginv() from the MASS package to R ginv() completely different values โโcompared to the MATLAB pinv() function. They both claim to produce a generalized inverse Moore-Penrose matrix.
I tried to set the same tolerance for the implementation of R, but the difference persists.
- MATLAB default tol:
max(size(A)) * norm(A) * eps(class(A)) - R default tol:
sqrt(.Machine$double.eps)
reproduction:
R:
library(MASS) A <- matrix(c(47,94032,149, 94032, 217179406,313679,149,313679,499),3,3) ginv(A)
outputs:
[,1] [,2] [,3] [1,] 1.675667e-03 -8.735203e-06 5.545605e-03 [2,] -8.735203e-06 5.014084e-08 -2.890907e-05 [3,] 5.545605e-03 -2.890907e-05 1.835313e-02
svd(A)
outputs:
$d [1] 2.171799e+08 4.992800e+01 2.302544e+00 $u [,1] [,2] [,3] [1,] -0.0004329688 0.289245088 -9.572550e-01 [2,] -0.9999988632 -0.001507826 -3.304234e-06 [3,] -0.0014443299 0.957253888 2.892454e-01 $v [,1] [,2] [,3] [1,] -0.0004329688 0.289245088 -9.572550e-01 [2,] -0.9999988632 -0.001507826 -3.304234e-06 [3,] -0.0014443299 0.957253888 2.892454e-01
MATLAB:
A = [47 94032 149; 94032 217179406 313679; 149 313679 499] pinv(A)
outputs:
ans = 0.3996 -0.0000 -0.1147 -0.0000 0.0000 -0.0000 -0.1147 -0.0000 0.0547
SVD:
[U, S, V] = svd(A) U = -0.0004 0.2892 -0.9573 -1.0000 -0.0015 -0.0000 -0.0014 0.9573 0.2892 S = 1.0e+008 * 2.1718 0 0 0 0.0000 0 0 0 0.0000 V = -0.0004 0.2892 -0.9573 -1.0000 -0.0015 -0.0000 -0.0014 0.9573 0.2892
Solution: to make R ginv look like MATLAB pinv use this function:
#' Pseudo-Inverse of Matrix #' @description #' This is the modified version of ginv function in MASS package. #' It produces MATLAB like pseudo-inverse of a matrix #' @param X The matrix to compute the pseudo-inverse #' @param tol The default is the same as MATLAB pinv function #' #' @return The pseudo inverse of the matrix #' @export #' #' @examples #' A <- matrix(1:6,3,2) #' pinv(A) pinv <- function (X, tol = max(dim(X)) * max(X) * .Machine$double.eps) { if (length(dim(X)) > 2L || !(is.numeric(X) || is.complex(X))) stop("'X' must be a numeric or complex matrix") if (!is.matrix(X)) X <- as.matrix(X) Xsvd <- svd(X) if (is.complex(X)) Xsvd$u <- Conj(Xsvd$u) Positive <- any(Xsvd$d > max(tol * Xsvd$d[1L], 0)) if (Positive) Xsvd$v %*% (1 / Xsvd$d * t(Xsvd$u)) else array(0, dim(X)[2L:1L]) }