As a continuation of this question, I applied multiple logistic regression with the interaction between quantitative and qualitative explanatory variables. MWE is shown below:
Type <- rep(x=LETTERS[1:3], each=5) Conc <- rep(x=seq(from=0, to=40, by=10), times=3) Total <- 50 Kill <- c(10, 30, 40, 45, 38, 5, 25, 35, 40, 32, 0, 32, 38, 47, 40) df <- data.frame(Type, Conc, Total, Kill) fm1 <- glm( formula = Kill/Total~Type*Conc , family = binomial(link="logit") , data = df , weights = Total ) summary(fm1) Call: glm(formula = Kill/Total ~ Type * Conc, family = binomial(link = "logit"), data = df, weights = Total) Deviance Residuals: Min 1Q Median 3Q Max -4.871 -2.864 1.204 1.706 2.934 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.65518 0.23557 -2.781 0.00541 ** TypeB -0.34686 0.33677 -1.030 0.30302 TypeC -0.66230 0.35419 -1.870 0.06149 . Conc 0.07163 0.01152 6.218 5.04e-10 *** TypeB:Conc -0.01013 0.01554 -0.652 0.51457 TypeC:Conc 0.03337 0.01788 1.866 0.06201 . --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 277.092 on 14 degrees of freedom Residual deviance: 96.201 on 9 degrees of freedom AIC: 163.24 Number of Fisher Scoring iterations: 5 anova(object=fm1, test="LRT") Analysis of Deviance Table Model: binomial, link: logit Response: Kill/Total Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(>Chi) NULL 14 277.092 Type 2 6.196 12 270.895 0.04513 * Conc 1 167.684 11 103.211 < 2e-16 *** Type:Conc 2 7.010 9 96.201 0.03005 * --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 df$Pred <- predict(object=fm1, data=df, type="response") df1 <- with(data=df, expand.grid(Type=levels(Type) , Conc=seq(from=min(Conc), to=max(Conc), length=51) ) ) df1$Pred <- predict(object=fm1, newdata=df1, type="response") library(ggplot2) ggplot(data=df, mapping=aes(x=Conc, y=Kill/Total, color=Type)) + geom_point() + geom_line(data=df1, mapping=aes(x=Conc, y=Pred), linetype=2) + geom_hline(yintercept=0.5,col="gray")

I want to calculate LD50
, LD90
and LD95
at their confidence intervals. Since the interaction is significant, so I want to calculate the LD50
, LD90
and LD95
with their confidence intervals for each Type (A, B, and C)
separately.
LD stands for lethal dose. This is the amount of substance needed to kill X% (LD50 = 50%) of the test population.
Edited Type
is a qualitative variable representing various types of drugs, and Conc
is a quantitative variable representing various concentrations of drugs.